kimya.uzerine.com


Haber bülteni üyeliği



Ziyaret Bilgileri

[ Per, 25 Nis 2019 ]
Toplam 59 ziyaret
46 benzersiz ziyaretçi

kimya » NÜKLEER KİMYA

NÜKLEER ENERJİNİN TARİHÇESİ

1934' de İtalyan bilim adamı Enrico FERMİ Roma'da yaptığı deneyler sonucu nötronların çoğu atom türünü bölebileceğini buldu.Uranyum nötronlarla bombalandığında beklediği elementler yerine uranyumdan daha fazla hafif atomlar buldu.

1938' de Almanya'da Otto HAHN ve Frittz STRASSMAN radyum ve berilyum içern bir kaynaktan uranyumu nötronlarla bombaladıklarında Baryum-56 gibi daha hafif elementler bulunca şaşırdılar.Bu çalışmalarını göstermek için Nazi Almanya'sından kaçmış Avustralya'lı bilim adamı Lisa MEITNER' e götürdüler. MEITNER o sıralarda Otto R.FRISCH' le çalışıyordu.Yaptıkları deneyler sonucunda oluşan baryum ve diğer yeni oluşan maddeleri uranyumun bölünmesi sonucu oluşan maddeler olduğunu düşündüler ,ama reaksiyona giren maddenin atomik kütlesiyle ürünlerin atomik kütlesiyle ürünlerin atomik kütleleri birbirini tutmuyordu.Sonra EINSTEN' in E=m.c.c formülünü kullanarak ortaya enerji çıkışını buldular,böylece hem fisyon hem de kütlenin enerjiye dönüşümü teorisini ispatladılar.

1939' da BOHR Amerika'ya geldi. HAHN-STRASSMAN-MEITNER' in araştırmalarıyla ilgilendi.Washington'da FERMI ile buluştu ve kontrollü bir ortamda kendini uzun bir süre canlı tutabilecek zincirleme reaksiyon olasılığını tartıştılar.Bu reaksiyon sonucu atom büyük bir enerji ortaya çıkararak bölünüyordu.

Tüm Dünya'da bilim adamları kendini uzun süre canlı tutabilecek zincirleme bir reaksiyonun olabileceğini açıkladılar.Yeterli miktarda uranyumun uygun koşullarda biraraya getirilmesi gerekiyordu.Gerekli olan bu uranyum miktarına kritik kütle adı verildi.

FERMİ ve Leo SZILARD 1941' DE zincirleme uranyum reksiyonuna uygun bir reaktör tasarladılar.Bu bir uranyum ve grafit istifinden oluşuyordu. Uranyum grafit istifi içinde küp şeklinde fisyona uygun bir kafeste saklanıyordu. 1942' de FERMI ve ekibi Chicago Üniversitesi' nde biraraya geldiler ve Dünya'nın ilk rektörünü Chicago-1' i açtılar.Burada grafite ek olarak bir de kadmiyum ve çubuklar kullanıldı. Kadmiyum metalik bir element idi ve nötron emme özelliği vardı.Çubuklar içeri girdiğinde daha az nötron bulunuyordu ve bu reaksiyonun hızını azaltıyordu. 20 Aralık 1942' de Chicago'da tanıtım için biraraya geldiler. 3:25'te reaksiyon kendini besleyebilir duruma geldi ve Dünya nükleer çağa girmiş oldu.

A.B.D'de Manhattan Proje' si altında nükleer çalışmalar askeri amaçlarla yürütüldü.Savaştan sonra ise sivil amaçlar için nükleer araştırma yapılması için 1946' da A.E.C ( Atomik Enerji Komisyonu ) kuruldu. 1951' de Arco' da ilk elektrik üreten reaktör açıldı. 1957' de ise finansal elektrik üreten ilk santral Shippingport , Pennsyle-vania' da tam üretime geçti.Askeri alanda da Amerikalılar 1945' te attıkları iki atom bombası dışında 1954' de nükleer bir denizaltı olan Nautilus' u devreye soktular. 1951 ve 1952' de gerçekleştirilen iki ön denemeden sonra 1954' de ilk termonükleer bomba' yı Bikini' de başarıyla denediler.

Diğer yandan Ruslar'da 1954' de Obninsk' de küçük bir nükleer santral çalıştırmaya başladı. 1962' de İstanbul'da Küçükçekmece gölü kıyısında kurulan 1 MW'LİK TR-1 araştırma reaktörüyle araştırmalara Türkiye'de de başlandı. 1980' lerde bu reaktörün gücü 5 MW' a çıkarıldı . (TR-2) U-235'ce %93 zenginlikte yakıt kullanan havuz tipi bu reaktörde,çekirdek fiziği araştırmaları, radyoizotop üretimi gibi alıştırmalar yapılmaktadır.Şu günlerde ise Akkuyu' da yeni bir nükleer enerji santralin çalışmaları sürdürülmektedir.

2000'lere girdiğimiz şu günlerde Dünya'da nükleer enerji üretimi şöyledir:

Amerika Birleşik Devletleri: % 30 - Fransa: % 15 - Eski Sovyet Cumhuriyetleri: % 10 - Japonya % 8 - Almanya % 7 - Kanada % 4 - İsveç % 3.5 - U.K. % 3.3 - İspanya % 2.7' dir.

 

NÜKLEER ENERJİ

Son zamanlarda çok tartışılan nükleer enerji konusunu, nükleer enerjiyi savunan ve savunmayan tarafların ele aldığı kriterlere bakarak inceleyelim istedik. Acaba nükleer enerjiye gerçekten gerek duyuyor muyuz yoksa onun yerine kullanabileceğimiz başka enerji kaynakları da var mı?
Öncelikle hükümetin nükleer enerjiyi bu kadar gerekli görmesinin altında yatan sebepler neler onlara bir bakalım.
Enerji ve Tabi Kaynaklar Bakanlığı'na göre nükleer enerji;
1. Nükleer santrallerin güvenlik değerlendirmesi bağımsız lisanslama kuruluşları tarafından son derece tutucu varsayımlara göre yapılmaktadır.
2. CO2 emisyonuna neden olmaz. Dünyada kurulu bulunan nükleer santraller yılda 2300 milyon ton CO2 emisyonuna engel olmaktadır.
3. SO2 emisyonuna neden olmaz. Dünyada kurulu bulunan nükleer santraller yılda 42 milyon ton SO2 emisyonuna engel olmaktadır.
4. NOx emisyonuna neden olmaz. Dünyada kurulu nükleer santraller yılda 9 milyon ton NOx emisyonuna engel olmaktadır.
5. Atık kül üretimine neden olmaz. Dünyada kurulu bulunan nükleer santraller yılda 210 milyon ton kül üretimine engel olmaktadır. Buraya kadar olaya baktığımızda nükleer enerjinin oldukça faydalı,
ucuz, çevreci bir enerji türü olduğunu söyleyebiliriz. Ancak bu kadar çok tartışılan bir konuda konuyu her yönüyle incelemek gerekmektedir.
Dünyada pek çok ülke yavaş yavaş nükleer enerjiden uzaklaşmakta farklı enerji arayışları içine girmektedir. Bu ülkelere şöyle bir göz gezdirecek olursak;
1. İtalya 1987'de, Çernobil faciasından sonra tüm reaktörlerini bir referandumla kapadı.
2. Avusturya'da ki Zwentendorf (Siemens) reaktörü işletime bile açılmadan Çernobil ve Three Mile adası facialarından önce kapatıldı.
3. İspanya'da 3, İsveç ve Almanya'da birer reaktör kapatıldı.
4. ABD ve Kanada da 1978 den itibaren yeni nükleer santral açılmadı.
5. Avustralya, Küba, Meksika, Portekiz, Yunanistan, İskoçya, Hollanda, İsviçre, Norveç, Endenozya, Vietnam, Tayland ve daha pek çok ülke nükleer planlarını terk etti.
Bu tabloya batığımızda nükleer enerjinin uzun yıllardan beri, aslında pek çok ülkeye o kadar da çekici gelmediği görülmekte. Bizim nükleer santral kurma sebebimiz ise Türkiye enerjisinin %5 ini karşılamak! Nükleer enerjiyi incelerken, bu konuda çok fazla çalışan bir kurum olan Greenpeace'in nükleer enerjiyi neden bir çözüm olarak görmediğine bir bakalım. Greenpeace göre;

1. Nükleer enerji çok pahalıdır. Nükleer elektriğin gerçek maliyeti tesis söküm ve radyoaktif atık maliyetleri hariç tutulsa dahi, rüzgâr gücünden, biyogazdan, bazı güneş enerji teknolojilerinden ve jeotermal enerjiden daha pahalıdır.
2. Nükleer enerji fazlasıyla tehlikelidir. En yeni teknolojiye sahip olduğu iddia edilen tesislerde bile, felaketlere neden olabilecek kaza riski vardır.
3. Nükleer enerji ve nükleer silah bir madalyonun iki yüzü olduğu için
?Nükleer gücün barışçıl kullanımı? gerçekte söz konusu değildir. Nükleer santral atıkları nükleer bomba hammaddesidir ve yine nükleer santraller vasıtasıyla uranyum zenginleştirilmesi yapılır.
4. Nükleer enerji ömrü yüz binlerce yıl olan çözümsüz ve ölümcül radyoaktif atık üretir. 50 yıllık nükleer enerji deneyi bu soruna çözüm getirememiştir.
5. Nükleer santral yapımı çok uzundur ve getirisi çok sınırlıdır. Bütün yasal onaylardan geçmiş bile olsa, bir nükleer santralin yapımı ilk elektriği üretene kadar en az 10 yıl sürer.
6. Nükleer enerji iklim değişikliğine çözüm değildir. Ayrıca, nükleer enerji kullanımı uranyum madenciliği ve santral inşaatı yüzünden önemli ölçüde sera gazı salımı söz konusu olmaktadır.
Bakanlığın çevreci olarak nitelediği nükleer enerjide ki en büyük sorunlardan biri sonuçta oluşan radyoaktif atığın ne yapılacağıdır. Ülkemizde çok çeşitli kimyasal atığın ihmalkârlıklar sonucu sebze yetişen yerlerin yakınlarına gömüldüğünü, insanların bunlardan para kazanma yoluna gittiğini gördükten sonra radyoaktif atıkların ne olacağı merak konusu. Dünyanın hiçbir yerinde de bu atıklardan güvenli bir şekilde kurtulmanın yolu da bulunamamıştır. Nükleer santral kurulduktan sonra olabilecek herhangi bir kazadan bölgede yaşayan milyonlarca insan etkilenecektir. Çernobil faciasının sonucunda; milyonlarca insan etkilenmiş, tiroid kanseri vakaları artmıştır.
Rüzgâr enerjisi, şimdiden dünyanın çeşitli bölgelerinde önemli bir enerji kaynağı olmuştur ve 20 yıl içinde dünya elektriğinin yüzde 12'sini sağlayabilir. Güneş enerjisi, dünyada yılda yüzde 33 oranında büyümektedir. Greenpeace ve endüstrinin araştırmaları, güneş endüstrisinin biraz devlet desteğiyle, önümüzdeki 20 yılda 2 milyar kişiye elektrik sağlayabileceğini gösteriyor Küresel finans analizcisi KPMG'nin bir raporu, yılda 500 MW gücünde güneş elektriği panelleri üretilmesi halinde güneş enerjisinin, geleneksel fosil yakıtlarla rekabet edebilecek kadar ucuzlayacağını gösteriyor.

 

NÜKLEER ENERJİ VE ÖNEMİ

Halkımız her zaman nükleer enerji denilirken radyasyonu düşünmüş ve bilinçsizliğin etkisiyle haklı olarak Akkuyu projesine karşı çıkmıştır. Gelişmiş Avrupa ülkelerinin hiçbir zaman vazgeçemediği nükleer enerji bize hala çok uzaktır. Fransa, Almanya, İtalya, İngiltere, ABD, bazı İskandinav ülkeleri, Bulgaristan, Rusya, Ermenistan ve daha bir çok ülkenin vazgeçilmez enerji kaynağı olan nükleer enerjinin fayda ve zararlarından bahsedelim; Nükleer enerjinin üretimiyle bilindiği gibi radyasyon açığa çıkar. Bu olay gayet doğal karşılanmalıdır. Şu konu açıkça belirtilmelidir ki; insan ömrünün her saniyesinde 15000 radyasyon parçacığı, insan vücuduna çarpar. Böylelikle insana yılda 500 milyar radyasyonik parçacık çarpar. Tüm ömür boyunca 40 trilyon partikül çarpması meydana gelir. Bir röntgen çekilmesi halinde insan vücuduna trilyonlarca partikül geçer. Ancak şu sonuç açıkça belirtilmiştir ki, 50 katrilyonda bir parçacık (1/50.000.000.000.000.000) insan hücresine zarar vermektedir. Tabi ki her radyasyon ışını bu rakamlar eşiğinde güvenlidir anlamına gelmez. Ancak biraz önceki oranlar denetiminde radyasyon şiddeti (sayısı) değil de, radyasyon cinsi önemlidir sonucuna varabiliriz. Yapılan araştırmalarda, oluşan kanserin %0,5 i, insanlara ömürleri boyunca çarpan radyasyonik parçacıklardan oluşmuştur. Şüphesiz ki radyasyon kanser riskini artırır. Ancak her insan mutlaka radyasyona maruz kalmaktadır. Eğer insan radyasyondan korunmak istiyorsa; topraktan kendini izole etmelidir çünkü toprak uranyum kaynağıdır. Beton ve tuğla evler yerine ahşap evlerde oturmalıdır çünkü beton ve tuğla uranyum ve potas barındırır. Böyle durumda insan kurşun zırhtan elbiseler giymelidir. Bunun gibi daha bir çok önlem alınmalıdır. Bu önlemler oluşan radyasyonun ancak %20 sini engeller. Ancak bunların hiç biri mümkün olmadığına göre şu kabullenmeyi tekrar hatırlayalım; sıradan bir insana çarpan 50 katrilyon radyasyon parçacığından sadece biri kansere yol açabilir. Radyasyonun en kullanışlı birimlerinden biri olan mrem 7.000.000 parçacığa verilen isimdir. Öyle ki 1 mrem radyasyon, televizyon izleyerek, fosforlu saatlerden vb. önemsiz kaynaklardan kolaylıkla alınabilir. 10.000 mrem in altındaki radyasyonlar düşük seviyeli radyasyonlardır. Şu ana kadar olan bütün reaktör kazalarının çoğunda da 10.000 mrem sınırı aşılmamıştır. ABD Bilimler Akademisi, İyonlaştırıcı Radyasyonun Biyolojik Etkileri Komitesi nin vardığı bağımsız sonuca göre ??1 mrem radyasyon, kanserden ölme riskini sekiz milyonda bir (1/8.000.000) oranında artırır??. Uluslar arası Radyolojik Korunma Kurulu (ICRP) ise bu oranı on milyonda bir (1/10.000.000) olarak açıklamıştır. Radyoaktif serpinti ekstentif bir değişimdir. Örneğin bir nükleer serpinti olduğunda o çevrede yaşayan nüfus ne kadar ise kişi başına düşen parçacık sayısı da yaklaşık olarak onun oranı kadar olur. Her parçacık insanlara çarpmak zorunda değildir. Toprağa adsorplanabilir. Bir reaktör kazasının olması günümüzde zor bir ihtimaldir. Çünkü önceki kazalar teknolojik yetersizlikten ileri gelmiştir. Günümüzde ileri teknoloji kullanılmaktadır. Fransa ve İtalya da reaktörler sebze ve meyve tarlalarıyla bitişik inşa edilmiştir. Hiçbir tehlikeli durum olmamaktadır. ABD de reaktör kazaları olmuştur. Bu kazalar da çevreye radyasyon saçılmıştır ancak bir röntgen filminde alınan radyasyon 80 kat daha fazladır yani 80 mrem dir. Japonya ya atılan atom bombası sonrasında çok yüksek seviyeli (100.000 mrem in üzerinde) radyasyon açığa çıkmıştır. Atom bombasının atılmasının ardından 80.000 kişilik bir japon grubu üzerinde yapılan testlerde; 8500 Japon toplam 100 bin ile 600 bin mrem lik radyasyona maruz kalmış ve 1974 yılına kadar aralarında beklenenden 200 kişi fazlasında kanserden ölüm vakası görülmüştür. 1935-1954 yıllarında İngiltere de ??ankylosing spondylitis?? denilen omurga hastalığı tedavisinde 300.000 mrem civarında ağır dozlarda radyasyon uygulanılırdı. 1970 e kadar, tedavi gören 14.000 hastada, beklenenden 80 kişi fazlası kansere yakalanmıştır. Önemli konulardan biri de genetik bozukluklardır. Yaygın bir nükleer sanayinin yol açacağı genetik etkiler 2,6 gün geç çocuk sahibi olmakla aynı değeri taşır. Geç yaşta annelikte, çocuğun dawn sendromu, turner sendromu vb. kromozomal düzensizliğe yakalanma şansı çok artarken; yaygın bir nükleer sanayinin bulunduğu yerlerde, normalde oluşan genetik bozuklukların üç binde biri kadar artış olmuştur. Kimyasal maddeler (kükürt di oksit in suda çözünmesiyle ortaya çıkan bi sülfatlar, nitrojen oksitlerden elde edilen nitrözamin ve nitröz asiti vb.) genetik bozukluklara yol açarlar. Ayrıca hava kirlenmesiyle kimyasal maddeler bozunurlar ve bir çok genetik bozukluklara sebebiyet verirler. Yine 28,35 g alkol, genetik etki bakımından 140 mrem lik radyasyona eşittir. Kafein de buna benzer.
??Dünya televizyon kanallarından biri, bazı insanları korkutmak için çok fazla tahrip edici özelliği olan HURLER sendromuna yakalanmış iki güzel ikiz bebeği (çok cici elbiseler giydirilmiş olarak) konuk etmiştir. Tüm ayrıntılar bu hastalığın dehşet verici sonuçlarıyla ilgiliydi. 5 yaşına gelince kör ve sağır olacaklar, ve 10 yaşında ölmeden önce de kalp, karaciğer, akciğer ve böbrek rahatsızlıkları geçireceklerdi. Çok kısa bir süre için, radyasyonun söz konusu olduğu bir işte çalışmış olan babaları, seyircilere, çocuklarının genetik hastalığına kendisinin maruz kaldığı radyasyonun neden olduğunu açıkladı. Radyasyonun ne kadar korkunç bir şey olduğunu gösterebilecek daha etkili bir propaganda olabilir mi? Ancak babasının işi dolayısıyla aldığı radyasyonun sadece 1300 mrem olduğu; yani eşinin çocuklara hamile kaldığı zamana kadar aldığı doğal radyasyonun yarısından da az bir doz olduğu belirtilmedi. Bu dozda bir etkilenim sonucu çocukların genetik bozuklukla doğma olasılığı 25 binde bir dir; normal risk, kendiliğinden meydana gelen mutasyonlara bağlı olarak %3 tür. Çocukların genetik sorunlarının, babalarının işyerinde aldığı radyasyona bağlı olma olasılığı ise; binde birdir.??
Nükleer enerji karşıtları her an yeni bahaneler üretmek isterler. Bunlardan biri de dünya ülkelerinin nükleer enerjiden vazgeçtiği söylentisidir. Dünya ülkeleri bu enerjiden vazgeçmemiştir. Sadece ekonomik durgunluk, Çernobil muhalifleri akımı, gelişmiş ülkelerin yeterince nükleer enerji santralleri olduğu için artık ihtiyaç duymaması gibi etkenler bu imajı ortaya çıkarmıştır. Bu enerjiden İsveç in vazgeçtiği söylenir. İsveç bu santrallerden vazgeçmemiştir. Halen nükleer santraller çalışmaktadır ve asla vazgeçemez. Çünkü bu santraller çevreye hiçbir zarar vermemektedir (Aksine ekonomik faydası vardır, çevreye dosttur, çünkü İsveç te diğer santral türlerinden saatte 29 kg/h lık CO2 açığa çıkarken, nükleer santrali olmayan Danimarka da bu miktar 890 kg CO2 sınırını zorlamıştır). Ancak yeni santral yapmama kararı almıştır. Çünkü siyasiler, oy kaygısı çekmektedir. Ülkenin %60 ı nükleer enerjiye hayır demiştir. Yine Kanada Nükleer santral yapmamaktadır. Çünkü çok fazla santrali vardır. Bu ülkenin artık nükleer enerji santraline ihtiyacı yoktur. Çin ve Kore 4 er tane santral inşa ediyor. Şu sıralarda inşa işlemi yavaşlatılmış durumdadır. Bunun sebebi, çevreye zarar verdiği değildir, tek sebebi ekonomik durgunluktur. Son 3 yılda 11 adet nükleer enerji santralleri inşasına başlanmıştır. 1996 yılında 4 ü Çin de olmak üzere 6 tane, 1997 yılında 1 adet G. Kore de, 1998 yılında 3 adet G. Kore de, 1999 yılında 1 adet Slovakya da başlanmış ve halen inşaları devam etmektedir. Aklımıza şöyle bir soru gelebilir, ??Niçin gelişmiş ülkeler de inşa işlemi yoktur??? Tek sebebi gelişmiş ülkelerin yeni santrallere ihtiyaç duymamasıdır. Bu ülkelerin yeterince santralleri vardır, bunlardan asla vazgeçmemiştirler, ve asla da vazgeçemezler. Fransa nın, yaklaşık olarak %75 lik enerji ihtiyacı nükleer reaktörler vasıtasıyla karşılanır. Yine ABD nin %25 lik enerji ihtiyacı bu enerjiyle karşılanır. Ülkemiz; stratejik açıdan çok önemli bir mevkii dedir. Uluslar arası gücümüzün sürekliliği için nükleer enerji santralleri şarttır. En uygun bölge Akkuyu dur. Çünkü en güvenli yer orasıdır. Gerek soğutma suyuna (denize) yakınlığı ve gerekse deprem bölgesi olmayışı ile en uygun yerdir. Nükleer enerji santralleri insanoğlunun inşa ettiği en güvenli makinedir. Geçmişte olan nükleer enerji kazaları abartılmaktadır. Çünkü insanların aklına birden atom bombası gelmektedir. İyi bir nükleer enerji santrali atom bombasından bile etkilenmez. Günümüzde bir de rüzgar enerji santralleri ortaya atılmıştır. Bu yeni enerji sistemi 4,6 cent/kW e enerji üretmektedir. Bu sistem çok ucuza enerji üretmektedir. Elbette ki inşasına karşı değiliz, yapılmalıdır. Ancak şu unutulmamalıdır ki hiçbir enerji, nükleer enerjiye alternatif değildir. Nükleer enerji 2,5 cent/kW e enerji üretmektedir. Ayrıca 1000 MW lık bir adet reaktör, 1 er MW lık 8000 adet rüzgar santraline eşdeğerdir. Çünkü 1 rüzgar paneli, 1 MW tan fazla enerji üretemez. Ürettiği enerjide %20 verimlidir. 8000 MW lık inşaa edilen rüzgar santralleri ancak 1000 MW enerji üretebilir.
8 adet reaktör (1 Akkuyu Projesi) = 64000 adet rüzgar paneli
8000 adet rüzgar santrali ise 100 lerce hektar arazinin işgali demektir. Bu araziye insan girmesi de sakıncalıdır. Yine güneş enerji üretimi metodu da buna benzer. Ülkemiz rüzgar ülkesi değildir. Bazı Ege kesimleri yeterli rüzgarı görmektedir. Elbette ki rüzgar sistemleri de kurulsun. O bölgeye bağımsız enerji sağlayabilir. Ya rüzgar kesilirse?
Nükleer enerjiye hiçbir enerji alternatif değildir. Dünyada 400 ün üzerinde nükleer santral vardır. En çok da Kanada da dır. Üstelik bu santrallerin çoğu turistik yerleşim merkezlerine yakındır. Pickering Santrali bir köyün içinde ve yat marinasıyla yan yanadır. Burada 8 reaktör vardır. Çevreye hiçbir zarar vermemektedir. Bu tür Candu santrallerinde asla serpinti olmaz. Bizim yapmayı tasarladığımız sistem de Kanada teknolojisine benzer. Bu sistemde serpinti ortaya çıksa; ilk önce yakıtın kendisi, nükleer serpintiyi adsorplar. Radyasyonun buradan kurtulduğunu düşünelim. Bu defa kapalı soğutucu sistem içinde kalır. Buradan da kurtulduğunu varsayalım. Soğutucu sistemin dışında yine kapalı bir sistem olan reaktör koruma kabı vardır. Hadi buradan da kurtulduğunu düşünelim. Bu defa en dışta beton sistemi ve onun içinde 4-25 cm kalınlığında çelik sistemi bulunan, beton konteynır vardır. Zaten serpintinin bu kısma gelmesi mümkün değildir. Gelse bile asla dışarıya sızma yapmaz. Çernobil Santrali nde bu sistem yoktu. Sadece kütleyi taşıyacak çelik bir kap, ve dışta betonarme bir bina vardı. Zaten kazada vardiya değişimi sırasında reaktörün gücünün birden düşürülmesinden, yani insan hatasından meydana gelmiştir. Yeni, teknolojik santrallerde böyle hatalar olmaz. Serpinti ortaya çıksa bile yedi katmandan oluşan reaktörden, dışarıya asla sızıntı olmaz. Elbette ki her enerji üretme sistemi çevreye zararlıdır. Ancak içlerinde en çevrecisi nükleer enerji santralidir. Nükleer enerjiye karşı olan insanlarımız, eski enerji üretim metotlarımızdan memnun gözüküyorlar. Ancak nasıl bir enerji üretimi yaptığımızı bilmiyorlar. Barajlarımız dönümlerce arazimizi sular altında bırakmıştır, üstelik yetersizdir. Bu açığı kapatmak için kullandığımız termik santrallerimiz aracılığıyla, tonlarca CO2, CO, SO2, NO2, ağır metallerden Ag, Pb, Sg, U ve daha bir çok zararlı maddeleri doğaya verdiğimizden haberleri var mıdır? En büyük çevre düşmanlığı bu dur. Yine enerji açığımızı doğal gaz ile kapatmaya çalışıyoruz. Bu enerji türü, doğaya, termik santralden daha az zararlıdır. Ancak sonuçta zararlıdır, çünkü çevreye yine zararlı gazlar verilmektedir. Üstelik doğal gaz bulmamız çok ta kolay değil. Eğer komşu doğal gaz ülkeleri bu enerji kaynağı transferini keserse açıkta kalırız. Alternatif enerji diye tasarlananların hiç biri, nükleer enerjiye alternatif olamaz. Alternatif diye düşünülen, güneş ve rüzgar enerjisinden başka bir de termal enerji vardır. Yer altından gelen sıcak su çok korroziftir. Nitekim Denizli de ki su da böyledir. Ayrıca atık su ise çok zehirlidir. Bu suyun tekrar yer altına gönderilmesi gerekir. Çevreye zararlıdır. Bu enerji sistemi de, nükleer enerjiye asla alternatif olamaz. Türkiye nin en büyük barajı Atatürk Barajı dır. Bu barajın gücü 2400 MWh tir. Verimi ise %50 ile 1000 MWh tir. Akkuyu ya yapılması tasarlanan nükleer enerji santralindeki 8 adet reaktörün gücü ise 8000 MWh civarındadır. Buna göre;
8 adet Atatürk Barajı = 1 Akkuyu nükleer santrali (Enerji bakımından) olur.
Nükleer reaktör yakıtı olarak genelde U235 kullanılır. Yakıt reaktife girmeden önce doğal radyoaktiftir. 1x1 cm ebadındadır. Bir yakıt kabında 37 tane çubuk kap sistemi vardır. Her çubuk 50 adet yakıt (1x1 cm ebatlı) almaktadır. Bir yakıt kabı toplam; 37 x 50 = 1850 adet yakıt bulundurur. Bu da 1850 ton kömüre eşdeğerdir. Yine 1kg nükleer yakıt, 2 milyon litre benzine eşdeğerdir. Nükleer enerji karşıtlarının en önemli soruları, ??Nükleer atıklar ne yapılacaktır?? sorusudur. Cevap olarak bir çok yöntem var. Bunlardan en önemlileri, camlaştırma ve kayalaştırma yöntemidir; Camlaştırma yöntemine göre; reaktörden çıkan atık, ilk 10 yıl reaktör kabı yanındaki havuzda bekletilir. Sonraki 20 yıl ise beton havuzda bekletilir. Atıkta U238, U237, Neptinyum, Sezyum, vb. i maddeler bulunur. Bu atıklar istenirse sonsuza dek burada bekletilir. İstenirse camlaştırılarak (küçük cam küreler halinde) etrafında çelik küre, yine etrafında fiziksel koruyucu, aşınmaya karşı etkileşimli madde, dış dolgu maddesi bulundurularak yerin 600 metre altına gömülür. 600 metre aşağıda su olduğunu düşünelim; Bu su asla yer yüzüne çıkamaz. Zaten 200 yıl sonra Atık maddenin %98 i kaybolur. Geriye %2 lik U238,, U235, Protaktinyum, Plütonyum vb. ? ışınımı yapan ve doğada çok fazla bulunan maddeler kalır. Bunlar zaten doğada çok fazladır. Yer yüzüne çıksalar bile radyoaktif tesirleri doğadaki gibi doğal normlarda olur. 200 yıl boyunca cam küreciklerde hiçbir aşınma olmaz (Mezopotamya da 3000 yıl dayanan camlar su içerisinde bulunmuştur). Zaten 200 yıl sonra nükleer etki doğal hale gelir. Mutlaka çok azda olsa zehirlilik etkisi vardır, ancak Hg, Cd, As, Cd vb. gibi diğer zehirli kimyasallar la karşılaştırıldığında radyoaktivite için durum çok daha olumludur. Kaya kütlelerine dönüştürme yöntemine göre ise; atıklar kayalaştırılarak yer altına gömülmektedir. Kayaların hareketi çok iyi bilindiği için hiçbir riski yoktur. 200 yıl sonunda zaten nükleer atık doğal radyoaktiviteye dönüşür. Biz bu sorunları düşünmem0eliyiz. Bilim adamları bu sorunları çözdüler. Bizler, kömürün yanmasıyla oluşan atıkları düşünelim (Her yıl Amerika da bu kirlilikten dolayı binlerce kişi ölmektedir). Baraj suları altında telef olan hektarlarca arazimizi düşünelim. Bunlara çözümler arayalım.
Sonuç olarak ; yüksek teknolojiyle inşa edilen bir reaktör, insanlara radyoaktif etki yapmaz. Reaktörlerin atık maddeleri de toprağın altına betonlanarak, çeliklenerek veya kurşunlanarak bırakıldığı taktirde izole edilir, zamanla zararsızlaşır. Bir gram aktif maddenin reaktörde yakılmasıyla;
E = m C2
kadar enerji açığa çıkar, sayısal değer olarak bu enerji;
E = m C2 = 1 g x (30.000.000.000 cm/sn)2 = 900.000.000.000.000.000.000 (900.000 katrilyon) Erg lik enerji açığa çıkar.
Q = 900.000 katrilyon erg x 0,00000002389cal/erg=1.501.000.000.000 cal/1g kadar ısı enerjisi açığa çıkar. Bu değer ise;
P = 25.002.000 kWh/1g güce eşittir.
Bu rakamlar hiçte küçümsenecek rakamlar değildir. Nükleer enerji aleyhindeki tepkiler halkımızın bilinçsizliğinden ileri gelmektedir. Reaktörler, diğer enerji kaynaklarına oranla daha tehlikesiz, daha yararlı, daha ucuz, ve daha çevrecidir. Niçin çevreci ve ekonomik yol varken diğerlerini alternatif kabul edelim?

KAYNAKLAR
1.Çok geç olmadan, Tübitak yayınları
2.Nükleer Kimya ders notları
3.Atom Radioative m.d., Reşat UYSAL, 1971 İstanbul
4.Tez Özetleri
5.Kimya ve Nükleer Fizik kaynak kitapları

 

RADYOAKTİF MADDELER, ÖZELLİKLERİ VE ÇEVREYE ZARARLARI

RADYOAKTİVİTE

Radyoaktif denilen bazı cisimlerin kendiliklerinden bir parçalanma sonucu fotoğraf plaklarına etki eden, gazları iyonlaştırıp elektriğe karşı iletken kılan ve daha bazı olaylara sebep olan çeşitli radyasyonlar yayabilme özelliiğidir. Bir radyoaktif çekirdeğin kendiliğinden bir başka çekirdeğe değişmesi olayına dezentegrasyon , yapma olarak bir çekirdekten bir başka çekirdeğin elde edilmesi olayına da transmütasyon denir.

Fizikokimya bilimleri alanında modern keşiflerin en önemlisi radyoaktifliğin keşfi olmuştur. Zira bu keşif; bizzat bu olayın keşfi yanında, kimyasal element hakkındaki düşüncelerimizi de temelinden değiştirmiştir. Öte yandan, atomun yapısı hakkındaki şimdiki teorilerle izotopluk kavramını ve bazı atomların çekirdeklerinin büyük birer enerji kaynağı teşkil ettiklerini ve bunlardan ilk faydalanmayı hep bu keşke borçluyuz.

Radyoaktiflik, henri becquerel tarafından, 24 şubat 1896?da X ışınlarının keşfinden iki ay sonra keşfedilmiştir.

Bir crookes tüpünden husule gelen katod, pozitif ve röntgen ışınlarının özelliklerinden biri de, flüoresan maddelerin flüoresansına sebep olmalarıdır. İşte bu olayın incelenmesidir ki radyoaktifliğin keşfine yol açmıştır. İlk röntgen tüpleri antikatotsuzdu. X ışınlarının kaynağı katod ışınlarının gelip çarpmasıyla flüoresan kılınmış olan tüpün çeperinde bulunuyordu. O halde, Röntgen tüpünün camı gibi flüoresan olan, yani sebebi her ne olursa olsun bir dış etkiyle ışık verebilen başka cisimlerinde röntgen ışınlarını verip vermeyeceği haklı olarak sorulabilirdi. Şöhretli Fransız matematikçisi Henri Poicare, 20 Ocak 1896?da, Fransız Fen akademisine röntgen tarafından elde edilen bir klişe göstermiş ve fluoresan kılınmış bazı cisimlerin X ışınları verip vermediklerinin araştırmasının enteresan olacağı ifade etmiştir. Bunun üzerine bir çok fizikokimyacı durumu incelemeğe başlamıştır. Çinko sülfür, Kalsium sülfür üzerinde yapılan denemeler olumsuz sonuç vermiştir. H. Becquerel benzer denemeleri bazıları fluoresan olan uranyum tuzları üzerine yapmıştır. Siyah kağıda sarılı fotoğraf camının siyahladığını görmüştür. Becquerel, sonraki denemelerinde gözlenen olayın fluoresansa bağlı olmadığını, tuzun önceden aydınlatılmasına lüzum olmadığı gibi, urainumun fluoresan olan ve olmayan bütün tuzlarının aynı şekilde etkide bulunduklarını ve metalik uranyumun en fazla aktif olduğunu bulmuştur. Becquerel, daha sonra, tam karanlıkta bulundurulan Uranyum bileşkelerinin siyah kağıt arasından uzun fotoğraf plaklarına etkide bulunan bazı ışınlar yayınladık süre bulmuştur. Bu ışınlara uranik ışınlar denmiştir.

Bu ışınlar, Rötgen ve lenard ışınları gibi ince metalik levhalardan geçer ve gazları iyonlaştırırlar; olay, uranium dahil olduğu bileşiğe tabi değildir; şiddeti, uraniumun mutlak miktarıyla orantılı olup aydınlatma, ısıtma gibi dış etkilere de tabi değildir. O halde radyoaktiflik maddenin atomik bir özelliğinden ileri gelir. Bequerel?in keşfinden sonra başka cisimlerin de uranium gibi uranik ışınlar yayıp yaymadıkları araştırılmıştır. Fransa?da Pierre ve Marie Sklodowska Curie ve Almanya?da G. Schmidt tarafından aynı zamanda yapılan araştırmalar sayesinde thoruim tuzlarının da, uranium tuzları gibi uranik ışınlar verdiklerini bulmuşlar. Bu ışınlara Becquerel ışınlar da denmiştir. Becquerel yahut uranik ışınlar veren cisimlere radyoaktif cisim; bu ışınlar yardımıyla meydana konulan maddenin bu özelliğine radyoaktiflik denir. Bu özelliğe malik olan elementlere radyo element; radyo element; radyoaktiflik özelliği ile ilgili olaylar, metodlar ve araçları bir arada inceleyen bilim dalına da radyoaktivite adı verilmiştir.

Bu gün kırktan fazla doğal element bilinmektedir. Bunların çoğu periyodik sistemin son periyotlarında yer alan ağır elementlerdir. İleride görüleceği gibi, yapma olarak bir çok radyo element elde edilmiştir.

RADYOAKTİF MADDELERİN ÖZELLİKLERİ

Atom çekirdeklerinin bir dış etki olmaksızın kendiliklerinden ışıma yapmalarına ve bu tür ışıma yapan atomlara da radyoaktif atom adı verilir. Radyoaktif atomların çekirdekleri kararsızdır.

Atom çekirdeklerinin kararlığı nötron ve proton sayısına bağlıdır. He, C, N ve O gibi hafif atom çekirdeklerinde nötron sayısı, proton sayısına eşittir. Nötron sayısının proton sayısına oranı 1?dir. Bu çekirdekler karalıdır. Proton sayısı 20 40 Ca atomundan fazla olan atomlardan; nötron sayısı proton sayısına eşit olan kararlı atom çekirdeği yoktur. Bu atom çekirdeklerinde Coulomb itme kuvvetleri, çekirdeğin kararlılığının azalmasına sebep olur. Ağır elementlere doğu nötron sayısının proton sayısına oranı git gide artar.

Kararlı olan 80 200 Hg izotop atomunda n/p oranı 1,5?tur. N/p oranı 1,5?tan büyük olan çekirdeklerin kararlılıkları kaybolur, en son kararlı çekirdek 83 209 Bi?tur. 83 209 Bi?tan proton sayısı büyük olan atom çekirdekleri kararsızdır. Çekirdekleri kararsız olan atomlar radyoaktiftirler ve radyoaktif bozunmalar ile karalı hale ulaşmak isterler.



Bu bilgiler ışığında bir atom çekirdeğinin radyoaktif özellik göstermesi için uyması gereken şartları şu şekilde sırayalabiliriz:

Çekirdekte bulunan nötron sayısının proton sayısına oranının 1,5?tan büyük olması,

Atom numarasının 83?ten büyük olması.

Bununla birlikte atom numaraları küçük olan bütün izotopların çekirdekleri kararlıdır.

Mesela, 6 proton ve 6 nötrona sahip olan 6 12 C izotopu karalı olmasına karşın 6 proton 8 nötrona sahip olan 6 14 C izotopu kararsız yani radyoaktiftir. Görüldüğü gibi, radyoaktiflik çekirdek yapısı ile yani çekirdekteki proton ve nötron sayıları ile diğer bir deyişle çekirdeğin cinsi ile ilgilidir.

Yapılan deneyler radyoaktif bir elementin bu özelliğini bileşiklerinde de gösterdiği ortaya koymuştur. Bir elementin radyoaktif özelliği o elementin kimyasal durumuna bağlı değildir. Sıcaklık ve basınç gibi dış etkiler de radyoaktif özelliği değiştirmez. Bunlara ek olarak radyoaktif özellik maddenin katı, sıvı veya gaz halinde bulunmasıyla da ilgili değildir.

Kurşundan bir kröze içinde bir miktar radyum koyup bir mağnetik alana tabi tutulursa radyasyonlar üç gruba ayrılır. Bir kısmı hafifçe sola sapar, pozitif yüklüdürler, bunlar iki elementer yüke malik olan helyum çekirdekleridir, bunlara alfa ışınları denir; bir kısmı fazlaca sağa sapar, negatif elektronlar olup bunlara beta ışınları denir; bir kısmı hiç sapmaz, bunlar çok kısa dalga boylu elektromağnetik dalgalar olup bunlara gama ışını denir.

Radyoaktif maddelerden yayılan alfa beta ve gama ışınları çeşitli olaylara sebep olurlar. Mesela; karı, sıvı ve gaz halindeki maddeleri iyonlaştırırlar. Cam, porselen, fayans gibi maddeler radyoaktif ışın temasında renklenirler. Renklenme ışınların yollarına karşılık gelen bölgede olur.

Radyoaktif ışınlar canlı hücrelerine etki ederler. Başta kanser olmak üzere birçok hastalığa sebep olurlar. Nesiller boyu kalıtsal bozukluklar meydana getirebilir. Şimdi bu bozunma türlerini sırasıyla inceleyelim.

Alfa Işınları: Alfa ışınları iki defa pozitif yüklü helium çekirdekleridir. Gerçekten alfa partiküllerinin spetik yükleri bu partikülleri veren radyoaktif cisim ne olursa olsun, daima hidrojeninkinin yarısına eşittir. Bu sonuç, ancak alfa taneciklerinin atom ağırlığının ikiye eşit olduğu yahut, Rutherford?un ilk anda ileriye sürdüğü gibi, bunların kütlesi 4 olan ve herbiri 2 e yüküne malik atomlardan ibaret olduğu şeklinde izah edilebilir. Ramsay 1904?te, Rutherford?un ileri görüşünün tamamiyle yerinde olduğunu genel olarak ispat etmiştir. Gayet ince çeperli fakat gazları geçirmeyen bir cam ampul içerisine radon konmuştur; bu ampul de daha büyük, havası, boşaltılmış ve iki elektrot ihtiva eden bir başka ampul içerisine alınmıştır.

Bir müddet sonra dış ampulde husule getirilen bie deşarjın helium spektrumunu verdiği görülmüştür. Deneme şartlarına göre, bu helium ancak ince kenarlı birinci ampulün çeperinden alfa partiküllerinden ileri gelebilirdi. Radonun bozunması şöyle olmuştur.

86 Rn 222 è 84 Ra 218 + 2 He 4

Böylece şüpheye mahal kalmaksızın alfa partiküllerinin helium çekirdeklerinden ibaret oldukları meydana konulmuştur.

Alfa ışınları radyoaktif atomdan, bu atoma tabi olarak çok büyük bir hızla yayınlanırlar. Örneğin RaC ?nin verdiği partiküllerinin hızları 19220 Km/s?dir.

Bir radyoelementin verdiği alfa ışınları genellikle aynı enerjiye maliktirler, yani bunlar monokinetikler veya aynı enerjiyi haiz gruplar olarak kendini gösterirler. Bir ışının husule geldiği andan itibaren durdurulduğunda ana kadar bir ortamda aldığı yola, bu ışının ortamdaki yolu denir. Radyoaktif cisimlerin elektrik, ısı kimyasal olayları,esas itibariyle alfa ışınlarından gelir. Bir radyoaktif cismin verdiği alfa partiküllerini saymak suratiyle Avogadro sayısı bulunabilir. Bunun için bir taraftan bir radyoaktif cismin belli bir kütlesinin belli bir zamanda verdiği helium hacmi ölçülür ve buradan 11,2 litredeki helium sayısı hesaplanır. Alfa ışınlarının havadaki yolları ilk hızlarının küpü ile orantılıdır. Bu kanunun geçerli olduğu sınırlar içinde alfa partiküllerinin iyonlaştırma gücü, partikülün hızı ile ters orantılıdır ve bir alfa partikülünün husule getirdiği iyon sayısı R 2/3 ?le orantılıdır; R partikülün yoludur. Radyoaktif cisimlerin elektrik, ısı ve kimyasal olayları, esas itibariyle, alfa ışınlarından gelir. Bir radyoaktif cismin verdiği alfa partiküllerini saymak suretiyle avogadro sayısı bulunabilir.

Beta Işınları: Beta ışınları negatif elektronlardan ibarettirler. Hızları ışık hızına yaklaşır, yolları alfa ışınlarınınkinden daha uzundur. Beta ışınları da iyonlaştırıcı ışınlardır. Beta ışınlarını primer ve sekonder olmak üzere iki gruba ayırmak mümkündür. Primer beta ışınları çekirdekten gelen ışınlardır. Örneğin 83 Bi 10 beta dezentegrayonu ile 84 Po 10
?a dönüşür:

83 Bi 210 è 84 Po 10 +B -

Bu dönüşüme çekirdekte bir nötronun bir protona dönüşmesi sonucunda meydana gelir : n è p + B - . Bir radyoelementin verdiği beta ışınları izokinetik değildir. Bunların enerjileri en küçük değerden en büyüğüne kadar değerler alabilir. Kaba olarak maksimum, maksimal enerjinin üçte birine tekabül eder. Bu şekilde enerjileri kesiksiz bir enerji dağılımı gösteren beta ışınları, primer beta ışınlarını teşkil eder ve yalnız bunlar çekirdek dezentegrasyonundan gelenlerdir. Bazı atomlarda bunların yanında aynı enerjiye sahip beta ışınları grupları da yer alır ki bunlara sekonder beta ışınları denir.

Beta ışınları çok gericidir, yani yolları çok uzundur. Çoğu radyoaktif cisim alfa, beta ve gama ışınlarını filtre etmek gerekir. Ama bugün kuvvetli arı beta kaynağı olarak yapma yolla elde edilen Stronsium - 90?dan faydalanılır. Alfa parçacıklarına oranla kütlelerinin çok az, hızlarının ise çok yüksek oluşundan daha fazla nüfuz etme özelliğine sahiptirler. 2-3 mm kalınlığındaki alüminyum levhadan geçebilirler. Beta parçacıkları elektrik ve manyetik alanda, alfa parçacıklarına göre zıt yönde ve kütlesinin çok küçük olması nedeniyle daha fazla sapmaya uğrarlar.

Beta bozunmasına uğrayan bir atom, çekirdeğinden bir elektron fırlatır. Fırlatılan bu elektron ise çekirdekteki bir nötronun bir protona dönüşmesi sonucunda oluşur.

Netice itibariyle beta bozunmasına uğrayan elementin atom numarası 1 artar, kütle numarası ise değişmez.

Gama Işınları: Gama ışınları kısa dalga boylu elektromağnetik radyasyonlardır. Bir çekirdekte alfa yahut beta ışınları meydana geldikten sonra çoğu zaman çekirdek uyartılmış hale geçer. Uyartılmış haldeki çekirdeğin bir enerji aşırısı vardır. Uyartılmış çekirdek normal haline dönüşünde kaybettiği bu enerj, aşırısı çekirdekten bir taneciğin fırlatılması şeklinde olmazsa buna bir izomerik geçiş denir ve bu sırada gama radyasyonu yayınlanır.

Uyartılmışhalde uzun süre kalan çekirdek ile normal haldeki çekirdeğeler denir.Enerjileri yüksek olan gama ışınları birkaç santimetre kurşundan geçer. Öreneğin ThC? nün verdiği gama ışınlarının yarılanma kalınlığı yani radyasyonların şiddetinin yarıya düşmesi için lüzumlu kalınlık 1,5 cm kurşundur

Gama ışınları doğrudan doğruya iyonlaştırıcı değildirler, ama meydana getirdikleri elektronlarla bunu yaparlar. Gama ışınlarının etki gücü çok yüksektir. Beta ışınlarına göre 100 kat daha fazla nüfuz etme özelliğine sahiptirler. Gama ışınları birkaç santimetre kalınlığındaki kurşundan geçebilir.

Gama ışınlarını ancak kalın kurşun levhalar 2-3 metrelik beton bloklar durdurabilir. Gama ışınları yüksüz olduklarından elektrik ve manyetik alanda sapma göstermezler. Gama ışınları iyonlaştırıcı değillerdir.

Gama parçacıklarının kütlesi ve yükü sıfır kabul edilir. Dolayısıyla gama bozunmasına uğrayan bir elementin atom ve kütle numarası değişmez.

Gama ışınları çok yüksek enerjili, elektromanyetik dalgalardır. Genele olarak gama ışınları tek başına meydana gelmez. Bir takım radyoaktif bozunma veya çekirdek tepkimelerinin ardından meydana gelir. Örneğin alfa ve beta parçacıkları oluşturan bazı radyoaktif bozunma tepkimeleri sonucunda çekirdek enerjili halde kalır. Bu yüksek enerjili çekirdek gama ışını yayarak daha düşük enerjili çekirdeğe dönüşür.

Sekonder Beta Işınları: Bazı izomerik geçişlerde bazı uyartılmış çekirdekler gama ışınları vermezler, ama enerji aşırıları atomun çekirdek dışındaki ve çoğunlukla K tabakasından

elektron koparıp fırlatmaya harcanır. Buna iç dönüşüm denir. Çekirdek dışı elektronlar belli enerji seviyeli elektronlar olduğundan, bu sekonder beta ışınlarının enerjileride bellidir. Genellikle, izomerik geçiş enerjisinin ancak bir kısmı iç dönüşüm elektronları verir. Bir iç dönüşüm elektronun fırlatılmasından sonra boşalan yere üst tabakalardan elektron sıçraması sonucu ya enerji elektronun çıktığı ve geldiği seviyedeki enerji farkına eşit enerjili ve elementin karakteristiği olan X ışınları fotonu meydana gelir, ya da bu enerji üst tabakalardaki bir elektronun fırlatılmasına harcanır. Böylece ışımasız bir iç dönüşüm olur. Bu şekilde meydana gelen elektronlara auger elektronları denir. Bunların da enerjileri bellidir.

Yukarıdaki izahlardan anlaşılacağı üzere, beta ışınlarının dağılımı çok karışıktır. Kesiksiz bir enerji dağılımı gösteren primer beta ışınları yanında belli enerjili dönüşüm ve auger elektronları da bulunur.

Pozitron Işıması: Pozitron ışımasında çekirdekteki bir proton bir nötrona dönüşür. Bu esnada özellikleri elektrona benzeyen fakat pozitif yüklü bir tanecik oluşur. Bu taneciğin çekirdekten dışarı fırlatılması pozitron ışımasıdır. Pozitron parçacığı B + veya +1 e 0 şeklinde sembolize edilir. Pozitron ışıması yapan bir çekirdeğin atom numarası 1 azalır, kütle numarası ise değişmez.

RADYASYONUN GENETİK ETKİLERİ

Düşük seviyeli radyasyonun tek belirgin sağlıksal etkisi sonraki kuşaklarda görülen genetik sakatlıklara sebep olmasıdır. Genellikle genetik bozukluklar olarak adlandırılan bu sakatlıklar, renk körlüğünden, mongolizm gibi ciddi hastalıklara kadar çeşitlilik gösterir. Bazı kişiler, radyasyonun iki başlı çocukların doğmasına; insan altı ya da insan üstü canavarların ortaya çımasına neden olacağına inanırlar. Durum kesinlikle bu değildir; çünkü insanlık daima doğal radyasyona maruz kalmış olmasına karşın, hiçbir zaman bu tür vakalar görülmemiştir.

Bazı kişiler de radyasyon kaynaklı genetik etkilerin insan soyunu yok edeceğine inanırlar. Ancak bu da yanlıştır. Yani radyasyonun yol açacağı herhangi bir kötü özellik, sonuçta yok olacaktır. Nükleer endüstrinin genetik etkileri, ancak insanın doğal kaynaklardan aldığı radyasyondan sadece yüzde bir kadar daha fazla radyasyon etkilenimine yol açtığı hatırlandığında en iyi şekilde anlaşılabilir. Doğal radyasyonun da, normal olarak karşılaşılan genetik bozukların sadece %3?ünden sorumlu olduğu düşünülmektedir. Nükleer gücün genetik etkilerini anlamanın muhtemelen daha kolay bir yolu, geç yaşta çocuk sahibi olma durumudur. Geç annelik yaşının Down sendromu, Turner sendromu ve birkaç diğer kromozomal düzensizliğe yakalanma riskini artırdığı bilinirken, geç babalık yaşının da akondroplazia ve binlerce diğer otozomal, baskın hastalık riskini hızla artırdığı bilinmektedir. Sonuçlara, fareler üzerinde yapılan çalışmalar ile varılmış olması ilginçtir, çünkü insanlar üzerinde genetik bozukluğa yol açan, radyasyonla ilgili gerçek bir kanıt yoktur. Böyle bir kanıt bulabilmek için en iyi yol, atom bombasından sonra Japonya?da hayatta kalan insanları gözlemektir, ancak dikkatli olarak yapılan birkaç çalışmada, bu insanların ilk kuşak çocuklarında aşırı miktarda genetik bozukluk görülmemiştir.

Genetik bozukluğa sahip bir çocuğu olması riskini merak edebilir; bu gebelikten önce maruz kalınan her mrem radyasyon için 40 milyonda bir olasılıktır.

Hava kirliliğinin ve birçok kimyasal maddenin de genetik bozukluğa yol açtığını ifade etmek uygun olacaktır. Kükürt dioksit suda çözündüğünde ortaya çıkan bisülfatlar ve nitrojen oksitlerde elde edilen nitrosamin ve nitrus asiti de içeren 3500 kimyasal madde hakkında kesin olamayan bilgi mevcuttur. Kafein ve alkolün genetik bozukluklara yol açtığı bilinir. Bir çalışmaya göre 28.35 gram alkol, genetik etki bakımından 140 mrem?lik radyasyona eşittir. Bir fincan kahve de 2.4 mrem?lik doza eşittir. Genetik bozukluklara yol açan belki de en önemli insan etkinliği, erkeklerin pantolon giyme geleneğidir. Bu, cinsiyet hücrelerinin ısınmasına yol açar ve böylece kendiliğinden ortaya çıkan mutasyonların, yani genetik hastalıkların başlıca kaynağının olasılığını arttırır. Kaba taslak olarak yapılmış mevcut hesaplamalar, bir miliremlik radyasyonun genetik etkilerinin, beş saat pantolon giymekle aynı olduğunu göstermektedir.

Nükleer gücün genetik etkileri ile ilgili can sıkıcı bir nokta da, biz üretilen enerjinin karından yararlanırken, bedelini gelecek kuşakların ödeyeceği şeklindeki zihniyettir. Bununla birlikte, bu kuşağın ve teknolojisinin geleceği olumsuz yönde etkilediği daha başka ve çok daha önemli durumların varlığını da hatırlamalıyız. Nükleer sanayi ve onun sonraki kuşaklara yapacağı genetik etkiler konusunda yapılacak anlamlı bir değerlendirmede, gelecek kuşaklar için, onlarca milyar dolara, onbinlerce yıllık çabaya mal olmuş ucuz ve bol bulunur, sonsuz bir enerji kaynağı karşısında söz konusu olan birkaç genetik bozukluk vakası ile bunlarla mücadele etmek için bizden onlara kalacak ucuz ve etkin araçların karşılaştırılması, dengeyi sağlayacaktır.

CANLILARIN RADYOAKTİVİTEYE KARŞI KORUNMA YÖNTEMLERİ

Henri Becquerel radyoaktiviteyi bulan kişi olarak ünlüdür. Kendisinin ayrı zamanda,radyoaktif maddelerin canlılar için tehlikeli olduğunu da keşfettiğini bilen çok azdır. Becquerel, içinde radyum örneği taşıdığı cebinin altında,dersinin yandığına dikkat etmiş. O zamandan beri, radyumun zararlı ışımalar meydana getirdiğinden haberimiz vardır ve hiç kimse cebinde radyum taşımayı aklına getirmez. Işınımların tehlikesi çok büyüktür,çünkü etkisi,zarar meydana geldikten bir süre(birkaç yıl bile olabilir)sonraya kadar hissedilmez.

Atom ışımaları nedir?Bu terim parçalanan atomlardan fırlatılan hızlı taneciklerden oluşmuş demetler ve enerji dalgaları için kullanılmaktadır. Her atom parçalandığı zaman çekirdeğinin bir kısmını dışarı fırlatmaktadır. Bir atom ortasındaki,çekirdek adı verilen bir göbekten belirli uzaklıkta, bu göbeğin çevresinde dönen ve elektron adı verilen küçük taneciklerden yapılmıştır. Her elektron negatif elektrik yükü taşımaktadır. Çekirdek, proton ve nötron adı verilen iki cins tanecikten yapılmıştır. Protonlar pozitif elektrikle yüklüdür, nötronlar yüksüzdür. Bir radyoaktif atomun çekirdeği hiçbir sebep olmadan parçalanma eğilimi gösterir. Parçalandığı zaman proton ve nötron fırlatacağını söyleyebiliriz. Gerçekten böyle olur, ama çoğunlukla, fırlatılan tanecikler alfa ve beta tanecikleridir. Alfa taneciği iki proton ve iki nötrondan oluşmuş bir gruptur; içinde proton olduğu için pozitif elektrikle yüklüdür. Beta taneciği elektronla aynıdır. Negatif elektrik yükü taşımaktadır. Çekirdeğin çevresinde dönen elektronlardan gelmektedir, ama nötronlardan birinin, bir proton ve elektron haline gelmesini sağlayan bir dönüşüm sonunda çekirdekten fırlatılmaktadır. Taneciklerin hızı bunların enerjisini ve giderek, cisimlere geçme yeteneğini belirtir. Alfa ve beta tanecikleri hemen hemen ışık hızına yakın bir hızla hareket ederler. Enerji dalgalarına gama ışınları denir ve elektrik yükü taşımazlar. Bütün bu ışınlarda ve hareket eden taneciklerde, önemli bir ortak özelik, yolları üzerine rastlayan atomların elektronlarını koparma eğilimidir. Dönmekte olan elektronlarından bazılarını kaybedince, bu atomlar, elektrikle yüklü hale gelirler ve ilk hallerindeki atomlardan çok daha fazla ve değişik şekilde kimyasal reaksiyon meydana getirme özelliği kazanır. Belki atom, ışımalarına gösterilen canlı dokuların harap olması bu yüzdendir. Herhangi bir ışınımın cisimlere ne kadar geçebileceği bunun enerjisine bağlıdır. Çünkü, ışınım her bir atoma çarpışında, bu atomlardan elektron koparmakla enerjisinin bir kısmını kaybeder. Alfa tanecikleri havada birkaç santimetre ilerleyince havadaki gaz atomlarından elektron koparmak yoluyla bütün enerjisini kaybeder. Madenlerde yaklaşık olarak milimetrenin binde birkaçından ve canlı dokulardaysa yaklaşık olarak yüzde birinden fazla bir derinliğe giremez. Bir tek alfa taneciği milyonlarca atomlardan elektron koparabilir. Beta ışınlarının geçme yeteneği alfa ışınlarından daha fazladır, ama canlı dokular içerisinde fazla ileri gidemez. Alfa ve beta ışınları verev cisimler deride ışınım verev cisimler deride ışınım yanıklarına sebep olabilir. Kazara nefes alma yoluyla yada yutularak vücuda girerlerse, özellikle tehlikeli olurlar, çünkü bu ışınımların geçme yeteneği küçük olmakla beraber, uzun bir süre boyunca akciğerlerin ve midenin çeperlerinde meydana getirdiği etki çok önemlidir. Gama ışınları alfa ve beta ışınlarından çok daha öldürücüdür; hızlı nötronlar da öyledir. Bunun sebebi, menzillerinin hemen hemen sınırsız olmasıdır. Bu ışınlar, örneğin , insan vücudunun bir tarafından öte tarafına yada yüksek enerjili gama ışınları halinde yirmi santimetre kalınlığında kurşundan geçebilir. Acaba ışınım, hayvan olsun, bitki olsun, canlılara neden zarar verir? Bütün canlılar , canlı hücrelerden yapılmıştır. Büyüme ve eskiyen hücreleri yenileme her bir hücrenin kendisinin bütünüyle aynı olan iki hücreye bölünme yeteneğiyle mümkün olmaktadır. Bu bölünme , hücrenin çekirdeği ve belki bu çekirdekte meydana gelen bir kimyasal ürünle dezoksiribonükleik asit(DNA)meydana gelmektedir. Hücreye hayat veren şeyin ne olduğunu daha kimse tam olarak bilmemektedir, ama bunun, hücrenin çekirdeğini meydana getiren çok atomlu karmaşık moleküllerdeki atomların, anlaşılması güç bir düzenlenmesiyle ilgili olduğu sanılmaktadır. Bölünmenin meydana gelmesi için hücrede normal miktarda DNA bulunmalıdır ki yeni hücrelerin her birine normal miktarda DNA gidebilsin. Elektrikle yüklü bir tanecik sıradan bir moleküle çarparsa, bunun yapısını altüst eder, çünkü atomların bir araya gelmesi elektrikle yüklü taneciklerin çeşitli atomlarda ortaklaşa bulunması ve atomlar arasında değiş tokuş edilmesiyle mümkün olmaktadır. Işınımın elektrikle yüklü taneciklerinin, canlı hücrenin çekirdeği atomların çok karmaşık ve çok dengeli olan düzenine ve su gibi olan dış kısmına gelişi, nasıl olduğu daha tam olarak bilinmemekle beraber, hücrenin hayatını ve yapısını zedeleyen yeni bir düzenlemeye sebep olur. Işınların etkilediği bir hücre hemen ölür, yada ışınların dozu çok büyük ve etkilediği süre çok uzun değilse, kendini iyi edebilir. Tek bir hücrenin, yeri doldurulur. Ama, bir hayvanın bölünebilen bütün aktif hücrelerinin çekirdeği,bunların bölünmesini engelleyecek kadar zarar görürse, o zaman, yeni hücreler meydana gelemez ve biraz gecikirse de, eninde sonunda hayvanın ölümü gelir. Çok yüksek dereceli ışınım bir canlıyı hemen öldürebilir, çünkü, hücrelerin kimyasal düzenini bozmakla can alıcı organları öylesine kötü bir şekilde zedeler ki, bu organlar görevlerini yapamaz hale gelir bu da ani ölüm demektir. İnsan vücudundaki can alıcı organların korunması derine geçebilen gama ışınlarından ve nötron ışınımlarından bile kurtulma şansı artırabilir, çünkü ana organlar zarar görmezse vücut fonksiyonlarını yapmaya devam edebilir. Alyuvarların üretiminde artmaya sebep olarak vücudun dayanıklılığını arttıran dalak özellikle önemli bir organdır. Biraz tuhaf gelir ama, vücuttaki en büyük kemiklerin korunması da önemlidir, çünkü vücuttaki hasarları onaracak olan yeni kan hücreleri bunların ilik kısmında meydana gelir. Eğer, örneğin sadece bir kalça kemiği korunursa, bu bir tek fabrikanın kan hücreleri üretmeye devam etmesi iyileşme ve yaşama şansını önemli derecede artırır. Hücrelerin ışımaların etkisine uğramasıyla ilgili birçok araştırlamalar yapılabilmektedir; ama hala, birçok şey iyice anlaşılmış değildir. Eğer, hücre olgun bir hücreyse, bunun iyileşme ve bölünerek çoğalabilme şansı çok fazladır. Bölünmenin ilk basamaklarında olan daha genç hücreler ışınlara karşı çok duygundur ve ancak hafif dozlardan zarar görmeden kurtulabilir. Çeşitli ışınların etki olanları hakkında bildiklerimizle, halkı, radyoaktivitenin tehlikelerinden koruyacak güvenlik tedbirlerini bulmak mümkündür. Hiçbir radyoaktif maddenin çıplak elle tutulamayacağı apaçıktır. Cisim, sadece, alfa ve beta ışınları veriyorsa, bunlarla çalışan kimse eldiven giyerek bunları elleyebilir. Ama gene de radyoaktif tozların solunum yoluyla vücuda girmesi tehlikesi vardır. Bunu önlemek için, cisim, üzerinde içini görmek için bir pencere ve kenarlarındaki deliklerde bir çift eldiven bulunan ve eldivenli kutu adı verilen bir kutunun içinde ele alınır. Çalışan kimse, kutunun dışından içeriye erişmek için ellerini eldivenlere sokar. Bu şekilde kutu hava sızdırmaz ve radyoaktif madde çalışan kimsenin hiçbir yerine değmeden kullanılabilir. Gama ışını veren cisimlerin kurşun ve betondan kalın duvarların arkasında saklanması gerekir. Bunlarla ancak uzaktan kumandayla çalışabilir. Radyoaktif cisimlerle çalışanların koruyucu elbise, eldiven ve ayakkabı giymeleri ve bazen maske takmaları, laboratuardan ayrılırken de bunları çıkartmaları şarttır. Koruyucu elbisenin bir şekli, üzerinde toplanması mümkün olan kirleri çıkarmak için fırçalanabilir şişirilmiş, su geçirmez elbisedir. Bu tedbirler kazara çalışan kimsenin üzerine konan radyoaktif tozların laboratuarda yemek içmek, makyaj tazelemek yada sigara içmek, tehlikelidir. İşçiler ve laboratuarlar, ışınım miktarını düzenle kaybeden ölçü aletleriyle kontrol edilir. Bu kontrol düzenlerinin en basiti, madalya gibi cep üzerine asılan madensel bir kılıf içerisindeki bir fotoğraf filmidir. Film her hafta yıkanır ve filmin kararma miktarına bakarak etkisi altında kaldığı ışınım miktarı ölçülür. Eğer maksimum bir doz bulunursa işçi bir süre ışınımlardan uzak durur. Işınımlara karşı korunma, özellikle nükleer reaktörlerin yakınında önemlidir, çünkü buradaki ışınım isteyerek meydana getirilmiştir ve laboratuvarlardakinden çok daha şiddetlidir. Reaktörler kurşunla kaplanmış tek parça bir beton duvarla çevrilmiştir. Bu biyolojik kalkan en hızlı nötronlar ve gama ışınlarını bile durduracak şekilde tasarlanmıştır. Tabii kontrol çubukları ve nükleer yakıt, ancak uzaktan kumandayla yönetilir. Bu biyolojik kalkandan dışarıya biraz ışınım sızarsa, otomatik monitörler hemen alarm işareti verir. Atmosferi kirletebilecek tozlardan temizlenmesi için, nükleer elektrik santrallerini havalandırma gelen hava süzgeçlerden geçirilir. Günümüzde radyoaktif maddelerden ve radyoaktif hale gelen gereçlerden kurtulma, önemli bir problemdir.

RADYOAKTİFLİK

Radyoaktiflik:

Kendiliğinden ışıma yapabilen maddeler radyoaktif maddelerdir .Radyoaktiflik çekirdek yapısıyla ilişkilidir. Radyoaktif bir atom hangi bileşiğin yapısına girerse , o bileşiği radyoaktif yapar.


Radyoaktif maddeler kuvvetli birer enerji kaynağıdır . Radyoaktif elementler bu enerjiyi kendiliklerinden yayınlarlar ve bu olayı hiçbir şekilde durdurmak mümkün değildir.


Atomun çekirdeğinde bulunan temel tanecikler proton ve nötron olup bunlara nükleon adı verilir.


Nükleon = proton & nötron


Radyoaktiflik özelliği ; elementlerin katı , sıvı gaz ya da bileşik halinde olması etkilemez .



Atomun kütlesi çekirdek deki proton ve nötronların kütleleri toplamına eşit olması gerekirken daha küçüktür , bu arada ki kütle farkı ;



E=m . c 2 şeklinde enerjiye dönüşür .

Bu enerjiye bağlanma enerjisi denir. Bir atomda nükleon başına düşen bağlanma enerjisi ne kadar büyükse , atom o kadar kararlı yapıda olur.

Bu enerji çekirdekteki nükleonları bir arada tutan enerjidir.


Atom çekirdeğinde kararlılık ya da kararsızlık , proton- nötron sayıları arasındaki ilişki şöyle genellenebilir:


Atom numarası 1-20 arasındaki atomların çekirdeklerinde proton sayısı = nötron sayısıdır.

Atom numarası 20-83 arasındaki çekirdeklerde nötron sayısı proton sayısından fazladır.

Atom numarası 83? ten büyük olan elementlerin çekirdekleri kararsız olup radyoaktiftir.

Atom numarası ve nötron sayısı çift olan atomların , atom numarası ve nötron sayısı tek olan atomlara göre , daha çok sayıda kararlı izotopu vardır.

En kararlı çekirdekler , hem nötron hem de proton sayıları çift olanlardır. 0-8-20-28-50-82 proton veya nötron sayısına sahip çekirdekler özellikle kararlıdır. Bu sayılara sihirli sayılar denir.

Radyoaktif Bozunmalar: 

Atoma dıştan herhangi bir etki olmadan , kendiliğinden bozunarak daha küçük parçalara ayrılması ve bu ayrılma sırasında ışıma yapmasına radyoaktiflik , bu tür ışıma yapan elementlere de radyoaktif atom denir.


Radyoaktif , Şubat 1896?da Henri Becquerel ( Henri Bekerel ) tarafından , potasyum uranil sülfatın yaydığı ışınların bazı maddelerden geçip fotoğraf plağını karartmasıyla keşfedildi.


Radyoaktif elementlerin bileşiklerinde de radyoaktif özelliği aynen görülür. Bu yüzden radyoaktif kimyasal veya fiziksel etkilere ve değişmelere bağlı bir özellik değildir. Sadece çekirdek yapısına bağlı ve çekirdekte olan bir değişmedir.


Radyoaktif elementler , radyoaktif ışımalar ile kendiliğinden başka kararlı elementlere dönüşür. Atom çekirdeklerinin kararlığı nötron ve proton sayısıyla ilgilidir. Doğada bulunan atomların nötron sayıları , proton sayılarına göre grafiğe geçirildiğinde aşağıdaki grafik elde edilir.

Grafik kararlılık kuşağının dışındaki çekirdekler kararsızdır. Bu elementler radyoaktiftir. Genel olarak n/p < 1,5 olan çekirdekler kararlı ya da az kararlı , n/p > 1,5 olan çekirdekler kararsızdır. 

Kararsız çekirdek yapısına sahip olan elementler ,kararlı bir çekirdek yapısına ulaşmak için alfa( ) , beta

( ) ,pozitron ( ) bozunması ve elektron yakalaması şeklinde bozunmaya uğrayarak ışıma yapar. Bu

elementlere ışıma yapan anlamında radyoaktif element denir.

Atom çekirdeklerinde nükleon ( temel tanecik) başına düşen bağlanma enerjisi o çekirdeğin kararlılığının ölçüsüdür. Atom çekirdeklerinde tanecik sayısı arttıkça bağlanma enerjisi azalır. Çekirdek kararsızlığı arttıkça radyoaktif olma özelliği artar. 


Atomlardaki çekirdek olayları kimyasal olaylardan farklıdır. Radyoaktivite ve çekirdek olayları ile ilgili aşağıdaki sonuçlar çıkarılabilir:


Radyoaktiflik , dış etkenlere bağlı değildir. Bir atomun radyoaktifliği sıcaklık , basınç , çözünme , kimyasal tepkimeye girme gibi olaylarla değişmez.

Bir atom radyoaktif ise , o atomun oluşturduğu bileşikler de radyoaktiftir. Kimyasal olaylar radyoaktifliği değiştirmez.

Radyoaktif olaylarda açığa çıkan ya da gereken enerji kimyasal olaylara göre çok fazladır.

Radyoaktif atomlar kararlı çekirdeğe dönüşebilmek için çeşitli ışımalar ( Radyoaktif bozunma) yaparlar.

Bozunma Çeşitleri :

1-Alfa ( ) Bozunması

Atom numarası 83? ten büyük olan elementler , kararlı bir çekirdek yapısına ulaşmak üzere , atom ve kütle numaralarını azaltarak n/p oranını bire yaklaştırmak isterler. Bunun için alfa bozunmasına uğrayarak

He çekirdeğinden ibaret alfa tanecikleri yayınlamaları gerekir. Bu olaya alfa bozunması denir. Kısaca , atomun yapısından bazı parçaların atılmasıdır.


Bir alfa ışıması yapan elementin atom numarası 2 , kütle numarası 4 azalır.
 

 

NÜKLEER BOMBALAR, RADYOAKTİF KİRLETİCİLER, URANYUMUN ELDE EDİLMESİ 

 Radyoaktif Kirleticiler:

Bazı sedimentlerde oldukça kuvvetli radyoaktif çekirdekler bulunabilir. Bu radyoaktif çekirdeklerin yaydığı ışınlar canlılar için çok zararlı hatta bazen öldürücüde olabilir. Çünkü sediment içindeki bu çekirdekler sindirim ve solunum sistemine geçer. Orada oldukça uzun süre kalır ve ışın yaymaya devam eder. Zararın derecesi radyoaktif çekirdeğin cinsine, miktarına, vücutta kalma süresine ve kana karışıp karışmadığına bağlı olarak yayılan ışınlar canlı dokularına büyük zararlar verirler. Her radyoaktif çekirdeğin kendine özgü bir ışın yayma hızı vardır. Bu hız genellikle çekirdeğin yarılanma ömrü ile ifade edilir. Bu yarılanma ömrü birkaç saniye olabildiği gibi birkaç yıl da olabilir. Yarılanma ömrü çok uzun olan çekirdekler çevrelerine çok fazla zarar vermezler. Fakat yarılanma ömrü orta uzunlukta olanlar (20-30 yıl gibi) çevreleri için çok zararlıdırlar. Yarılanma ömrü çok kısa olan çekirdeklerin zararı da yarılanma ömrü orta uzunlukta olanlara oranla azdır. Bazı radyoaktif çekirdekler yer kabuğunda doğal olarak bulunurlar. Bazıları da yapaydır. Bugün üzerinde en çok durulan ve yer kabuğunda bulunan radyoaktif madde uranyumdur. Bunun sebebi uranyum eldesinin zor olması ve değişik yerlerde kullanılmasıdır. Uranyum eldesi ve sebep olduğu çevre kirlenmeleri özet olarak aşağıdaki gibidir.



Uranyumun Elde Edilmesi:

Uranyum çeperleri genellikle %0.1-0.2 U2O3 ihtiva ederler. Dolayısıyla kullanılabilecek kadar uranyum elde etmek için tonlarca uranyum cevherinin işlenmesi gereklidir. Bunun için uranyum cevheri önce çok ince öğütülür. Daha sonra asit ile alkali işlemlere tutulur. Bu şekilde çözeltiye alınan uranyum bileşiği çöktürme ekstraksiyon iyon değiştirme kromotografisi gibi metotlarla saflaştırılır. Çözeltiye alındıktan sonra geriye uranyumu alınmış çok ince dağılmış yüzlerce ton uranyum atığı kalır. Bu da çevre açısından tehtid unsurudur. Çünkü bu atıkların içerisinde hem uranyum hem de uranyumdan türeyen diğer radyoaktif maddeler bulunur. Bunlardan iki tanesi Toryum(Th 230) ve Radyum (226) dur. Birincisinin yarılanma ömrü 80 yıl ikincisinin 1600 yıldır. Bunlar yağmur sularıyla sürüklenerek ve çözünerek içme suyu barajlarına kadar gelir. Hem Toryum hem de Radyum kimyasal özellikleri bakımından Ca?a benzer. Bu metallerle kirlenmiş sular içildiğinde bunlar kemiklerde toplanır. Böylece radyoaktif madde içeren atıkların etkileri azaltılmak için üzeri yeşillendirilerek bitki örtüsü ile kaplanarak etkisi azaltılır. Bu radyoaktif maddeleri yok etmez kafat çevreye yayılmasını önler.



Nükleer bombalar:

Radyoaktif çekirdeklerin kullanıldığı bir başka yerde nükleer bombaların yapımıdır. Böyle bir bomba yer yüzünde patladığı zaman kullanılan radyoaktif çekirdeğin dışında yeni bir çok radyoaktif maddeler meydana gelir ve atmosfere yayılır. Bunlar atmosferde dolaşmaları esnasında disperse olmakla daha küçük radyoaktif partiküller haline dönüşmekle ve böylece daha da tehlikeli hale gelmektedir. Dispersiyon sonucu atmosfere yayılan radyoaktif partiküller zamanla yeryüzüne döner ki bunlara fallout da denir. Yeryüzüne dönen bu partiküllerde çeşitli yollarla insana ulaşır ve kana karışırlar. Bunlardan en tehlikelisi Stronsiyum 90?dır. Cs 137?dir. Birincisinin yarılanma ömrü 28 diğerinin 30 yıldır. Stronsiyum 90 kimyasal özellikleri bakımından kalsiyuma benzer dolayısıyla kemiklerde ve dişlerde birikir. Kemiklerde biriken Stronsiyum kansızlığa ve kan hastalıklarına sebep olur. Bilindiği gibi kan hücreleri kemik iliklerinde üretilirler. Sezyum 137?nin kimyasal özellikleride potasyumunkine benzer. Bilindiği gibi potasyum hücrelerde bulunur. Sezyum 137 insan vücuduna yediği etle, içtiği sütle, çayla ve yapraklı sebzelerle geçer. Bunun sonucu olarak ta insanın özellikle adalelerine yerleşir ve halsizlik meydan geli
 

 

ATOM BOMBASI 

Atom bombasını ilk kez yapmayı başaran ABD, ilk atom bombasını 16 Temmuz 1945'te New Jersey eyaletindeki Alamogordo hava üssünde patlattı. Bu patlamada inanılmaz derecede kuvvetli bir ışık16 km uzaklardaki dağları bile aydınlattı. Ateşten bir top 12,000 metreye yükseldi.

İkinci Dünya Savaşı'nda, savaş amacıyla kullanılan ilk atom bombası, 6 Ağustos 1945'te Japonya'da Hiroşima şehrine atıldı. Patlamada 66,000 kişi öldü, 69,000 kişi de yaralandı. Üç gün sonra Nagasaki'ye atılan atom bombası ise 37,000 kişiyi öldürdü, 40,000 kişiyi yaraladı.

Atom bombası patlatılınca, bir sarsma dalgası meydana gelir. Bu dalganın hızı ses hızından yüksektir. Atom bombası, genel olarak bu sarsma dalgasının etkisini artırmak için yerden yüksekte patlatılır. Bu dalga yere çarptıktan sonra yeniden yukarı doğru sıçrar. böylece aşağı doğru inip çıkan yeni sarsma dalgalarının oluşmasına yol açar.

Diğer yandan bombanın patladığı yerdeki hava ısınır; büyük bir hızla genişleyerek bir boşluk meydana getirir. Bu boşluğu doldurmak için hücum eden soğuk hava, şiddetli bir kasırgaya yol açar. Böylece atom bombası, iki yönden yakıcı, yıkıcı bir kuvvetle binaları devirir, canlıları öldürür.
 


 

 


Yorumlar (2)
İLGİ ALANLARİ NELERDİR
Kadircan tarafından | Cmt, 07 Tem 2018 13:07:19 tarihinde yazıldı.
bir mühendis adayı olarak insanlık yararı için geliştirilen bu buluşların nasıl felakete dönüştüğünü görüp kendi adıma ileride yapacağım çalışmalar adına çok büyük dersler çıkardım teşekkür ederim
dilek dağdeviren tarafından | Çar, 01 Haz 2011 15:31:07 tarihinde yazıldı.





Editör Bilgileri

Ömer Ercan

Yüksek Kimyager


Editöre Ulaşın

Oylama

Sitemizde daha çok neleri görmek istiyorsunuz?

Anabilim Dalları

Kimya Konu Anlatımları

Günlük Hayattaki Kimya

Kimya Deneyleri

Kimya Haberleri

En Son Eklenenler

blizzard-entertainment
diablo3
ubisoft
kristof-kolomb
honore-de-balzac
mardin_katliami
tamiller

Uzerine.com Copyright © 2005 Uzerine.com
uzerine.com Ana Sayfa | Gizlilik Sözleşmesi | Üye Girişi